

Clinical Product Catalog

2020

Binding Site

Binding Site is a Special Protein company committed to the research, development, manufacture, and distribution of innovative immunodiagnostic assays for the global laboratory market. With extensive expertise in antibody specificity technology, Binding Site gives clinicians and laboratory staff the tools to significantly improve diagnosis and management of patients across a range of cancers and immune system disorders.

Binding Site is committed to improving patient lives worldwide through education, collaboration, and innovation. With more than 90% of our products sold overseas Binding Site is a truly international organization. Our global coverage ensures we are able to meet your needs worldwide through our network of subsidiary offices and distributor partnerships.

You can expect the same dedicated Binding Site service and quality wherever you are in the world as we deliver customized service that meets your specific needs and expectations.

Innovative Immunodiagnostic Assays from Binding Site

Freelite® is a well-established serum assay set used for the diagnosis and monitoring of Multiple Myeloma, a cancer of cells in the bone marrow. Freelite® comprises two immunodiagnostic assays for accurate and rapid quantification of free κ (kappa) and free λ (lambda) immunoglobulin light chain concentrations. These assays can be performed on a number of automated platforms giving a sensitivity, accessibility, and consistency never before achievable. Freelite® has enabled significant improvements in both laboratory and clinical practice for the detection and monitoring of Multiple Myeloma.

Freelite® provides complementary insights into Multiple Myeloma and AL Amyloidosis management.

Binding Site is a market leader in the development of products for the investigation of immune status including immunodeficiency diseases. Our current range of specialized products includes assays for:

- Quantifying immunoglobulins & subclasses
- Measuring complement proteins
- CSF Assays

Optimized Instrumentation and Assays

Optilite® has been developed exclusively for Binding Site special protein assays, bringing harmony to assay and analyzer alike. This dedicated system, along with Binding Site's exceptional support, ensures optimal assay performance, and system throughput.

Quality Assurance

Our manufacturing site has quality systems approved to both ISO9001 and ISO13485:2016 certification. These, together with strict adherence to rigorous internal quality control procedures, ensure customers can be confident in the quality of Binding Site products.

Assays for in vitro diagnostic use have been FDA cleared for the USA, Health Canada Registered for Canada and CE marked for Europe. Performance of our assays is regularly monitored by participation in a number of independent national and international quality assurance schemes.

New Assays

New assays have recently been added to the menu on Binding Site's Optilite Optimized Protein System:

CSF assays for:

- IgG
- IgM
- IgA
- Albumin

All these new assays are fully automated, easy to use, and provide quantitative results.

These additions enhance the range of assays already available on Optilite which includes Freelite® serum free light chain assays, immunoglobulins, IgG and IgA subclasses, complement, albumin, haptoglobin, prealbumin, cystatin C, and β2 microglobulin.

Optilite is ideal for Binding Site's special protein assays and has been designed to bring together instrument, reagents, and exceptional support as a package from a special protein-focused supplier.

See pages 4-6 for more information on Optilite.

Table of Contents

4	Optilite®
	Optimized Protein System

6	SPAPLUS® Assays
---	-----------------

\bigcirc	Freelite®
\cup	rieente
\cup	Free Light Chain Analysis

17	Radial
1 /	Immunodiffusior

Quality Assurance Schemes

Extended Index

ASSAY	METHOD	CODE	PAGE
Albumin	Optilite	NK032.OPT.A	6
Low Level Albumin (CSF, Urine, Serum)	Optilite	NK032.L.OPT.A	7
Albumin	SPAPLUS	NK032.S	8
Albumin	RID	RN032.3	19
Albumin CSF	SPAPLUS	NK032.L.S	8
Alpha-1-Acid Glycoprotein	Optilite	NK063.OPT.A	6
Alpha-1-Acid Glycoprotein	SPAPLUS	NK063.S	8
Alpha-1-Antitrypsin	Optilite	NK034.OPT.A	6
Alpha-1-Antitrypsin	SPAPLUS	NK034.S	8
Alpha-1-Antitrypsin	RID	RN034.3	19
Alpha-2-Macroglobuin	Optilite	NK039.OPT.A	6
Alpha-2-Macroglobuin	SPAPLUS	NK039.S	8
Antithrombin III	RID	RN040.3	18
ASO	Optilite	LK189.OPT.A	6
ASO	SPAPLUS	LK189.S	8
B2M	Optilite	LK043.OPT.A	6
B2M	SPAPLUS	LK043.S	8
B2M	RID	GT043.3	19
B2M	BN™II	LK043.T	16
B2M - urine	Optilite	LK043.L.OPT.A	6
B2M - urine	SPAPLUS	LK043.U.S	8
C1 inactivator	Optilite	NK019.OPT.A	6
C1 inactivator	SPAPLUS	NK019.S.A	8
C1 inactivator	RID	RN019.3	18
C1q	RID	RN020.3	18
Functional C1 Inactivator	RID	RC002.3	18
Functional C1 Inactivator Combi	RID	RK019	18
C3	RID	RN023.3	18
C3c	Optilite	NK023.OPT.A	6
C3c	SPAPLUS	NK023.S	8
C4	Optilite	NK025.OPT.A	6
C4	SPAPLUS	NK025.S	8
C4	RID	RN025.3	18
C5	RID	RN027.3	18
Ceruloplasmin	Optilite	NK045.OPT.A	6
Ceruloplasmin	SPAPLUS	NK045.S	8

ASSAY	METHOD	CODE	PAGE
CH50 Reagent	Optilite	NK095.OPT.A	6
CH50 Calibrator	Optilite	NC095.OPT.A	6
CH50 Controls	Optilite	NQ095.OPT.A	6
CH50 Reagent	SPAPLUS	NK095.S	8
CH50 Calibrator	SPAPLUS	NC095.S	8
CH50 Controls	SPAPLUS	NQ095.S	8
CRP	RID	GT044.3	19
High Sensitivity CRP	Optilite	LK044.L.OPT.A	7
CRP Reagent	Optilite	NK044.OPT.A	6
CRP	SPAPLUS	NK044.S	8
CRP Calibrator	Optilite	NC044.OPT.A	6
CRP Controls	Optilite	NQ044.OPT.A	6
Cystatin C	Optilite	LK048.OPT.A	6
Cystatin C	SPAPLUS	LK048.S	8
Fibrinogen	RID	RN056.3	18
Freelite® Kappa	Optilite	LK016.OPT.A	6, 11
Freelite® Kappa	SPAPLUS	LK016.S	8, 11
Freelite® Kappa	BN™II	LK016.T	11
Freelite® Kappa	cobas®c	LK016.CB	11
Freelite® Kappa Urine	Optilite	LK016.M.OPT.A	6, 11
Freelite® Lambda	Optilite	LK018.OPT.A	11
Freelite® Lambda	SPAPLUS	LK018.S	8, 11
Freelite® Lambda	BN™II	LK018.T	11
Freelite® Lambda	cobas®c	LK018.CB	11
Freelite® Lambda Urine	Optilite	LK018.M.OPT.A	6, 11
Haptoglobin	Optilite	NK058.OPT.A	7
Haptoglobin	SPAPLUS	NK058.S	8
Haptoglobin	RID	RN058.3	18
IgA	Optilite	NK010.OPT.A	6
IgA	SPAPLUS	NK010.S	8
IgA	RID	RN010.3	18
IgA CSF	Optilite	LK010.L.OPT.A	7
IgA CSF	SPAPLUS	LK010.L.S	8
IgA Subclasses COMBI	RID	RK015	15
IgA Subclasses COMBI	BN™II	LK003.T	15
IgA1	Optilite	NK087.OPT.A	6
IgA1	SPAPLUS	NK087.S	8
lgA1	BN™II	NK087.1T	15

ASSAY	METHOD	CODE	PAGE
IgA2	Optilite	LK088.OPT.A	6, 15
IgA2	SPAPLUS	LK088.S	8, 15
IgA2	BN™II	LK088.1T	15
lgD	Optilite	LK013.OPT.A	6
lgD	SPAPLUS	LK013.S	8
IgD	RID	RN013.3	18
IgD	BN™II	LK013.T	16
IgD IFE antisera	Electrophoresis	PX013	16
IgG	Optilite	NK004.OPT.A	6
lgG	SPAPLUS	NK004.S	8
IgG	RID	RN004.3	18
IgG CSF	Optilite	NK004.L.OPT.A	7
IgG CSF	SPAPLUS	NK004.L.S	8
IgG Subclasses COMBI	RID	RK021	18
IgG Subclasses COMBI (latex)	BN™II	LK001.TB	15
IgG Subclasses COMBI (non-latex)	BN™II	NK001.T	15
IgG, A, M Combi kit	RID	RK002	18
lgG1	Optilite	NK006.OPT.A	6, 14
lgG1	SPAPLUS	NK006.S.A	8, 15
lgG1	RID	RN106.3	18
lgG1	BN™II	NK006.TB	15
lgG1	BN™II	NK006.T	15
lgG2	Optilite	NK007.OPT.A	6, 14
lgG2	SPAPLUS	NK007.S.A	8, 15
lgG2	RID	RN107.3	18
lgG2	BN™II	NK007.TB	15
lgG2	BN™II	NK007.T	15
lgG3	Optilite	LK008.OPT.A	6, 14
lgG3	SPAPLUS	LK008.S.A	8, 15
lgG3	RID	RN108.3	18
lgG3	BN™II	LK008.TB	15
lgG3	BN™II	NK008.T	15
lgG4	Optilite	LK009.OPT.A	6, 14
lgG4	SPAPLUS	LK009.S.A	8, 15

ASSAY	METHOD	CODE	PAGE
lgG4	RID	RN109.3	18
lgG4	BN™II	LK009.TB	15
lgG4	BN™II	NK009.T	15
IgM	Optilite	NK012.OPT.A	6
IgM	SPAPLUS	NK012.S	8
IgM	RID	RN012.3	18
IgM CSF	SPAPLUS	LK012.L.S	8
IgM CSF	Optilite	LK012.L.OPT.A	7
IgM	Optilite	LK012.OPT.A	6
Kappa (Free) IFE antisera	Electrophoresis	PX016	16
Lambda (Free) IFE antisera	Electrophoresis	PX018	16
Immunofixation IFE	Electrophoresis	XK001	16
Lipoprotein (a)	SPAPLUS	LK098.S	8
Microalbumin	SPAPLUS	NK032.U.S	8
Plasminogen	RID	RN065.3	18
Prealbumin	Optilite	NK066.OPT.A	7
Prealbumin	SPAPLUS	NK066.S	8
Protein C	RID	GT118.3	18
Rheumatoid Factor	SPAPLUS	LK151.S.A	8
Rheumatoid Factor	Optilite	LK151.OPT.A	7
Serum Paraprotein MMPROVET Q.A. scheme registration		QA001	19
Serum Protein Electrophoresis	Electrophoresis	XK003	16
Subclass [IMMPROVET Q.A. scheme registration		QA001	19
Total Complement	RID	RC001.3	18
Total Complement	RID	RC001.2	18
Total Complement	RID	RC001.1	18
Transferrin	Optilite	NK070.OPT.A	7
Transferrin	SPAPLUS	NK070.S	8
Transferrin	RID	RN070.3	18
Urine Paraprotein MMPROVET Q.A. scheme registration		QA006	19

Optilite is the latest innovation in special protein testing, fully optimized to create simplicity from complex analytical processes. It is the culmination of over 25 years of cutting edge research from Binding Site, the global leader in special protein diagnostics.

Optilite combines extensive features to bring you a new level of efficiency, workflow optimization, and confidence in results.

Key features include:

- Automatic re-dilution
- Continuous loading and unloading of samples, reagents, and cuvettes
- Optimized with one of three methods of antigen excess protection
- Optimized assay protocols with wide measuring ranges and large dilution steps

Enhance your efficiency

Time savings and reduced costs

- ✓ Boost your productivity with consistently reliable performance
- ✓ Minimize your reagent usage through optimized assay protocols
- ✓ Maximize your test throughput with continuous loading / unloading

Optimize your workflow

Lean operations

- ✓ Prioritize effectively with flexible, unrestricted access to samples, reagents, and cuvettes
- ✓ Minimize sample preparation time by loading any combination of sample tubes and fluid types
- ✓ Eliminate manual sample dilutions since Optilite re-dilutes to end result

Trust your results

Special protein expertise

- ✓ Optimized with one of three methods of antigen excess detection providing unparalleled protection
- ✓ Simplify data security through automatic lot number recognition and full traceability
- ✓ Access our dedicated technical and clinical special protein experts for all your support needs

Optilite Analyzer and Accessories

DESCRIPTION	PACK	CODE
Optilite Optimized Protein System	1	IE700
TENCELL™ Cuvettes	10800	IK702
Washing Solution (20mL)	4	IK703
Washing Solution (100mL)	6	IK704
Tubing Maintenance Solution	6	IK705
Optilite Special Wash 1(5mL)	6	IK707
Optilite Diluent 1 (40mL)	6	IK709
Optilite Diluent 2 (40mL)	6	IK710
Optilite Diluent 3 (40mL)	3	IK711

DESCRIPTION	PACK	CODE
Optilite Cal QC Rack	3	IK712
Optilite Sample Rack (7 position)	6	IK713
Optilite Sample Rack (9 position)	6	IK714
Optilite Sample Rack (9 position) - Blue	3	IK716
Tube Support Plate	6	IK719
0.5mL Sample Cups	1000	989220
Tray 2 PC	2	OTRAY2

Optilite Physical Specification

Dimensions

Width 37 in Depth 27.6 in Height 24.4 in Weight

242 lbs

Optilite Assays

Units in parentheses apply to both range and sensitivity.

DESCRIPTION	PACK	CODE
Monoclonal Gammopathies		
Freelite® Kappa kit Range 0.60-63500, sensitivity 0.6 (mg/L)	100 test	LK016.OPT.A
Freelite® Lambda kit Range 1.30-139000, sensitivity 1.3 (mg/L)	100 test	LK018.OPT.A
Freelite® Mx TM Kappa kit (Urine) Range 0.33-63500, sensitivity 0.33 (mg/L)	100 test	LK016.M.OPT.A
Freelite® Mx Lambda kit (Urine) Range 0.74-139000, sensitivity 0.74 (mg/L)	100 test	LK018.M.OPT.A
Immunoglobulins		
IgG kit Range 0.165-150, sensitivity 0.165 (g/L)	100 test	NK004.OPT.A
IgA kit Range 0.02-70, sensitivity 0.02 (g/L)	100 test	NK010.OPT.A
IgM kit Range 0.10-150, sensitivity 0.10 (g/L)	100 test	NK012.OPT.A
IgD kit Range 13-16800, sensitivity 13 (mg/L)	100 test	LK013.OPT.A
Subclasses		
IgG1 kit Range 150-144000, sensitivity 150 (mg/L)	100 test	NK006.OPT.A
IgG2 kit Range 20-22000, sensitivity 20 (mg/L)	100 test	NK007.OPT.A
IgG3 kit Range 5.5-2200, sensitivity 5.5 (mg/L)	100 test	LK008.OPT.A
IgG4 kit Range 4.3-64800, sensitivity 4.3 (mg/L)	100 test	LK009.OPT.A
IgA1 kit Range 35-6000, sensitivity 35 (mg/L)	50 test	NK087.OPT.A
IgA2 kit Range 5-1250, sensitivity 5 (mg/L)	50 test	LK088.OPT.A

DESCRIPTION	PACK	CODE
Complement		
C1 inactivator kit Range 0.08-0.88, sensitivity 0.08 (g/L)	50 test	NK019.OPT.A
C3c kit Range 0.025-6, sensitivity 0.025 (g/L)	100 test	NK023.OPT.A
C4 kit Range 0.0064-1.8, sensitivity 0.0064 (g/L)	100 test	NK025.OPT.A
CH50 Reagent Range 12.5-100, sensitivity 12.5 (U/mL)	100 test	NK095.OPT.A
CH50 controls 4x low control, 4x high control, 4x elevated control	4 sets	NQ095.OPT.A
CH50 calibrators	3 vials	NC095.OPT.A
Renal Function		
Albumin kit Range 3.1-77, sensitivity 3.1 (g/L)	100 test	NK032.OPT.A
Low Level Albumin kit Range 11-66500, sensitivity CSF/Urine 11, Serum 2200 (mg/L)	100 test	NK032.L.OPT.A
Beta-2-Microglobulin kit Range 0.3-40, sensitivity 0.3 (mg/L)	100 test	LK043.OPT.A
Beta-2-Microglobulin Urine kit Range 0.03-200, sensitivity 0.03 (mg/L)	100 test	LK043.L.OPT.A
Ceruloplasmin kit Range 0.04-1.64, sensitivity 0.04 (g/L)	50 test	NK045.OPT.A
Cystatin C kit Range 0.4-12, sensitivity 0.4 (mg/L)	100 test	LK048.OPT.A
Specific Proteins		
Alpha-1-Acid Glycoprotein kit Range 0.19-6, sensitivity 0.19 (g/L)	100 test	NK063.OPT.A
Alpha-1-Antitrypsin kit Range 0.35-5, sensitivity 0.35 (g/L)	100 test	NK034.OPT.A
Alpha-2-Macroglobulin kit Range 0.2-6.4, sensitivity 0.2 (g/L)	100 test	NK039.OPT.A
Anti-streptolysin O kit Range 5-1600, sensitivity 5 (IU/mL)	100 test	LK189.OPT.A
C-Reactive Protein Range 5-1425, sensitivity 5 (mg/L)	100 test	NK044.OPT.A
C-reactive Protein Calibrators	2 vials	NC044.OPT.A
C-reactive Protein Controls 2x low control, 2x high control	2 sets	NQ044.OPT.A

DESCRIPTION	PACK	CODE
High Sensitivity C-Reactive Protein Range 0.5-10 mg, sensitivity 0.5 (mg/L)	100 test	LK044.L.OPT.A
Haptoglobin kit Range 0.026-8, sensitivity 0.026 (g/L)	100 test	NK058.OPT.A
Prealbumin kit Range 0.006-0.8, sensitivity 0.006 (g/L)	100 test	NK066.OPT.A
Rheumatoid Factor kit Range 7-1000 IU/mL, sensitivity 7 (IU/mL)	100 test	LK151.OPT.A
Transferin Range 0.14-22.4, sensitivity 0.14 (g/L)	100 test	NK070.OPT.A

DESCRIPTION	PACK	CODE		
Central Nervous System Disorders				
Low Level Albumin CSF Range 11-333 mg/L, sensitivity 11 (mg/L)	100 test	NK032.L.OPT.A		
IgG CSF Kit Range 7.5-1350 mg/L, sensitivity 7.5 (mg/L)	60 test	NK004.L.OPT.A		
IgA CSF Kit Range 0.91-20 mg/L, sensitivity 1.65 (mg/L)	60 test	LK010.L.OPT.A		
IgM CSF Kit Range 0.11-40 mg/L, sensitivity 0.11 (mg/L)	60 test	LK012.L.OPT.A		

Optilite assays in development

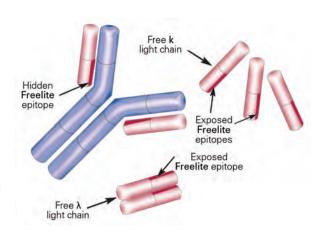
- Apolipoprotein A-1
- IgE
- Apolipoprotein B

The ranges quoted are achieved using the assay specific automatic re-dilution protocols.

SPAPLUS® Special Protein Analyzer

All SPAPLUS assays have broad, clinically relevant measuring ranges designed to meet the needs of the clinical laboratory. Units in parentheses apply to both range and sensitivity.

DESCRIPTION	PACK	CODE
Freelite® Kappa kit Range 0.4-1800, sensitivity 0.4 (mg/L)	100 test	LK016.S
Freelite® Lambda kit Range 0.45-1650, sensitivity 0.45 (mg/L)	100 test	LK018.S
IgG kit Range 0.165-140, sensitivity 0.165 (g/L)	100 test	NK004.S
IgA kit Range 0.02-70, sensitivity 0.02 (g/L)	100 test	NK010.S
IgM kit Range 0.1-150, sensitivity 0.1 (g/L)	100 test	NK012.S
IgD kit Range 7-16800, sensitivity 7 (mg/L)	100 test	LK013.S
IgG1 kit Range 0.15-144, sensitivity 0.15 (g/L)	100 test	NK006.S.A
IgG2 kit Range 0.02-22, sensitivity 0.02 (g/L)	100 test	NK007.S.A
IgG3 kit Range 0.0055-4, sensitivity 0.0055 (g/L)	100 test	LK008.S.A
IgG4 kit Range 0.003-3.4, sensitivity 0.003 (g/L)	100 test	LK009.S.A
IgA1 kit Range 30-6000, sensitivity 30 (mg/L)	50 test	NK087.S
IgA2 kit Range 5-1250, sensitivity 5 (mg/L)	50 test	LK088.S
C1 inactivator kit Range 0.06-0.8, sensitivity 0.06 (g/L)	50 test	NK019.S.A
C3c kit Range 0.025-6.0, sensitivity 0.025 (g/L)	100 test	NK023.S
C4 kit Range 0.0064-1.8, sensitivity 0.0064 (g/L)	100 test	NK025.S
CH50 reagent Range 12-190, sensitivity 12 (U/mL)	100 test	NK095.S
CH50 Controls 4 x low control, 4 x high control, 4 x elevated control	1 set	NQ095.S
CH50 Calibrators	1 set	NC095.S


DESCRIPTION	PACK	CODE
Albumin kit Range 0.1-154, sensitivity 0.1 (g/L)	100 test	NK032.S
α1-Acid Glycoprotein kit Range 0.19-6.0, sensitivity 0.19 (g/L)	100 test	NK063.S
α 1-Antitrypsin kit Range 0.35-5.0, sensitivity 0.35 (g/L)	100 test	NK034.S
α 2-Macroglobulin kit Range 0.2-6.4, sensitivity 0.2 (g/L)	100 test	NK039.S
Anti-Streptolysin-O kit Range 5-1600, sensitivity 5 (IU/mL)	100 test	LK189.S
$\beta \text{2 Microglobulin kit} \\ \text{Range 0.3-40, sensitivity serum 0.3 (mg/L)}$	100 test	LK043.S
β 2-Microglobulin Urine kit Range 0.03-20, sensitivity 0.03 (mg/L)	100 test	LK043.U.S
Ceruloplasmin kit Range 0.03-1.64, sensitivity 0.03 (g/L)	50 test	NK045.S
Cystatin C kit Range 0.4-14.7, sensitivity 0.4 (mg/L)	100 test	LK048.S
C-Reactive Protein Range 0.2-400, sensitivity 0.2 (mg/L)	100 test	LK044.S.A
Haptoglobin kit Range 0.026-8, sensitivity 0.026 (g/L)	100 test	NK058.S
Lipoprotein (a) kit Range 7-180, sensitivity 7 (mg/dL)	100 test	LK098.S
Microalbumin kit Range 11-17200, sensitivity 10.193 (mg/L)	100 test	NK032.U.S
Prealbumin kit Range 0.006-0.8, sensitivity 0.006 (g/L)	100 test	NK066.S
Rheumatoid Factor kit Range 7-1040, sensitivity 7(IU/mL)	100 test	LK151.S.A
Transferrin kit Range 0.14-22.4, sensitivity 0.14 (g/L)	100 test	NK070.S
Albumin CSF kit Range 17-810000, sensitivity CSF 17, Serum 5100 (mg/L)	60 test	NK032.L.S
IgG CSF kit Range 4.2-1350, sensitivity 4.2 (mg/L)	60 test	NK004.L.S
IgA CSF kit Range 0.15-48, sensitivity 0.15 (mg/L)	60 test	LK010.L.S
IgM CSF kit Range 0.3-70, sensitivity 0.3 (mg/L)	60 test	LK012.L.S

The ranges quoted are achieved from the assay-specific instrument protocols and may include an offline dilution.

Freelite[®] Free Light Chain Assays

Freelite® rapidly quantifies free light chains (FLCs) to aid in the diagnosis and monitoring of specific monoclonal gammopathies.

Affinity purified polyclonal antibodies, reacting specifically with κ and λ FLCs, are pre-coated onto latex particles. These latex reagents are used to produce nephelometric and turbidimetric kits that are specific for FLCs.

The International Myeloma Working Group (IMWG) guidelines recommend the use of Freelite® by name:

\\ The serum FLC assay (FREELITE®, The Binding Site Ltd., Birmingham, UK) is based on a commercial reagent set of polyclonal antibodies and is performed by immunonephelometry and it can be performed on a number of automated laboratory instruments.¹//

Freelite® is recommended for use in Multiple Myeloma and AL amyloidosis by the following:

- International Myeloma Working Group^{1,2,3,4}
- UK Myeloma Forum^{5,6,7}
- Nordic Myeloma Study Group⁶
- British Committee for Standards in Haematology⁷
- The National Comprehensive Cancer Network⁸
- European Society of Medical Oncology⁹
- Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain (AL) amyloidosis¹⁰
- International Kidney and Monoclonal Gammopathy Research Group¹¹
- Chinese Multiple Myeloma Diagnosis and Treatment Guidelines version 201312
- Associação Brasileira de Hematologia e Hemoterapia e Terapia Celular Project guidelines: Associação Médica Brasileira – 2012¹³

Serum Reference Ranges

The most extensive serum FLC normal range study was conducted at Mayo Clinic, USA using Binding Site Freelite® assays for the BN™II¹⁴. In this study serum samples from 282 normal subjects aged from 21 to 90 years were assayed for κ FLC and λ FLC.

Normal Adult Serum	Mean Concn.	Median Concn.	95 %ile Range
K FLC	8.36 (mg/L)	7.30 (mg/L)	3.30-19.40 (mg/L)
λFLC	13.43 (mg/L)	12.40 (mg/L)	5.71-26.30 (mg/L)
	Mean	Median	Total range
κ/λ FLC ratio	0.63	0.60	0.26-1.65

Freelite® + SPE + IFE = Guideline-compliant Testing

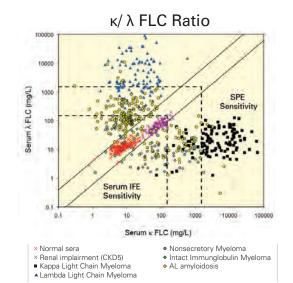


Figure of serum κ FLC and λ FLC concentrations in a selection of clinical conditions. Diagonal lines separate monoclonal from polyclonal FLC production.

The figure above shows the same normal range data (x) used to generate the reference ranges. The κ FLC and λ FLC results for each person were plotted on a logarithmic scale. This form of data presentation includes the κ/λ FLC ratio and is a useful way of visualizing results from patients with different types of Multiple Myeloma or AL amyloidosis. It also shows the number of samples that would be misclassified as negative using Serum Protein Electrophoresis (SPE) and serum Immunofixation Electrophoresis (IFE), but are detected with Freelite® assays.

The high diagnostic sensitivity of the κ/λ FLC ratio identifies additional plasma cell dyscrasias that would otherwise be negative by conventional electrophoretic techniques. In patients with renal impairment, the loss of the preferential filtration of κ FLCs means that the serum κ/λ FLC ratio can increase. As shown on the graph, some patients with chronic kidney disease (x) display slightly elevated κ/λ FLC ratios.

Freelite® Recommended for use at Diagnosis

Issues with Traditional Assays

- There is a lack of sensitivity of SPE and IFE in FLC detection
- The historic recommendation has been to test a 24 hour urine sample for FLC (Bence Jones Protein) by urine protein electrophoresis (UPEP). However, there are difficulties with collection (patient compliance), transport, storage, processing, and assay sensitivity

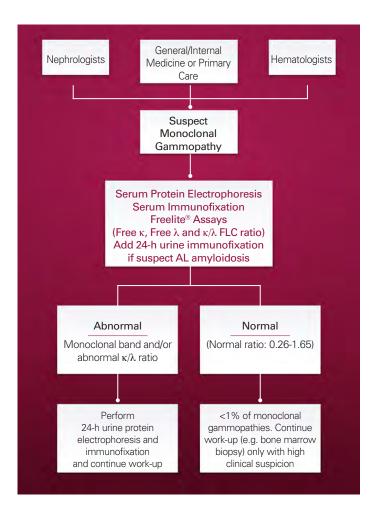
In the initial laboratory investigation a strategy of performing SPE and serum κ and λ Freelite® analysis will allow identification of all significant monoclonal proteins.

In all studies, the addition of Freelite® assays to SPE for first line investigation increased the detection of Multiple Myeloma and other plasma cell disorders. 13,14,15,16,17,18,20

Accuracy of Different Diagnostic Approaches for Monoclonal Testing

Retrospective studies show the optimal pick up rate for all paraproteins can be achieved using simply SPE or CZE (capillary zone electrophoresis) and Freelite®. 15,19-24

Diagnostic Sensitivity


% of Paraproteins Detected

Protocols	*Multiple Myeloma ¹⁵	**AL amyloidosis ²¹	Light Chain Multiple Myeloma ^{20,24}	Nonsecretory Multiple Myeloma ²²
SPE alone	88	53	57	0
Freelite® alone	97	98	100	68***
SPE, Freelite ® +/- IFE	>99	98	100	68***

^{*} Myeloma is inclusive of samples from patients identified with Intact Immunoglobulin Multiple Myeloma (IIMM), Light Chain Multiple Myeloma (LCMM) and Nonsecretory Multiple Myeloma (NSMM).

\\...the use of serum PEL plus FLC provides a simple and efficient initial diagnostic screen for the high-tumor-burden monoclonal gammopathies... Urine studies and serum IFE can be ordered more selectively. 13 //

Suggested Laboratory Diagnostic Pathway

SPE + IFE + Freelite® = **Guideline Compliant Testing**

Request Freelite®, SPE, and IFE in the initial diagnostic workup for patients suspected of having Multiple Myeloma.

^{**}According to the IMWG guidelines in AL amyloidosis a 24 hour urinalysis is still recommended.1

^{***} A further 4/28 patients with suppression of one or both FLC were identified in addition to this 68% equalling 82%.22

Freelite® Recommended when Monitoring

Monitor more patients accurately and easily

The International Myeloma Working Group recommends Freelite® for the quantitative monitoring of patients with oligosecretory plasma cell disorders, including patients with AL amyloidosis, oligosecretory myeloma, and in nearly two-thirds of patients previously classified as having Nonsecretory Multiple Myeloma.1 Additionally, the International Myeloma Working Group recommends monitoring Intact Immunoglobulin Multiple Myeloma patients periodically to identify light chain escape.

Use Freelite® to quantitatively monitor patients with specific monoclonal gammopathies

- FLC have a short serum half-life (2-6 hours) which shows response to treatment faster than intact immunoglobulin measurements (half-life 20 days) 19,25,26,27
- Freelite® is a more reliable and sensitive test than urine analysis1
- Improve patient outcome with early detection of light chain escape^{1,28,29}

The Freelite® test gives three measurements used to assess patients with a monoclonal gammopathy.

Ratio	κ/λ FLC (measures clonality)
iFLC	involved free light chains (monoclonal FLC
	production)
uFLC	uninvolved free light chains (polyclonal FLC
	production)

Freelite® Free Light Chain Assays

ANALYZER	DESCRIPTION	PACK	CODE
	Freelite® Kappa kit Range 0.6-63500 (mg/L), sensitivity 0.6 (mg/L)	100 test	LK016.OPT.A
	Freelite® Lambda kit Range 1.3-139000 (mg/L), sensitivity 1.3 (mg/L)	100 test	LK018.OPT.A
Binding Site Optilite®	Freelite® Mx Kappa kit (Urine) Range 0.33-63500 (mg/L), sensitivity 0.33 (mg/L)	100 test	LK016.M.OPT.A
	Freelite® Mx Lambda kit (Urine) Range 0.74-139000 (mg/L), sensitivity 0.74 (mg/L)	100 test	LK018.M.OPT.A
Binding Site SPA _{PLUS} ®	Freelite® Kappa kit Range 0.4-1800 (mg/L), sensitivity 0.4 (mg/L)	100 test	LK016.S
	Freelite® Lambda kit Range 0.45-1650 (mg/L), sensitivity 0.45 (mg/L)	100 test	LK018.S
Roche	Freelite® Kappa kit Range 0.8-562 (mg/L), sensitivity 0.8 (mg/L)	100 test	LK016.CB
cobas™ c Systems	Freelite® Lambda kit Range 0.7-748 (mg/L), sensitivity 0.7 (mg/L)	100 test	LK018.CB
Siemens BN™ II	Freelite® Kappa kit Range 0.3-15200 (mg/L), sensitivity 0.3 (mg/L)	2x50 test	LK016.T
	Freelite® Lambda kit Range 0.25-12800(mg/L), sensitivity 0.25 (mg/L)	2x50 test	LK018.T
·			

An extended range is possible for some of the kits using manual pre-dilution where validated.

Advantages of Testing with Freelite®

Freelite®	Urine Protein Electrophoresis
Serum samples	Urine samples
Easy sample collection	Very difficult to collect 24 hour urine samples (patient compliance)
Easy to store/archive samples	Difficult to store large samples
Freelite® is automation friendly	Labor intensive process
Minimal sample processing required	Concentrating of urine required
Fast result turnaround ¹⁶	Slow result turnaround
Fully quantitative assay	Densitometry quantification
Recommended in IMWG guidelines ¹	Only recommended on suspicion of AL amyloidosis ¹

Request FREELITE® by Binding Site to help monitor patients through treatment

Improve your accuracy in detecting specific monoclonal gammopathies

References

- 1. Dispenzieri A, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009; 23:215-224
- 2. Kyle RA, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010: 24:1121-1127
- 3. Dimopoulos M, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 2011 May 5;117:4701-5
- 4. Bird J, et al. Guidelines on the diagnosis and management of AL amyloidosis. Br J Haematol 2004 Jun; 125(6):681-700.
- 5. Bird J, et al. UK Myeloma Forum (UKMF) and Nordic Myeloma Study Group (NMSG): guidelines for the investigation of newly detected M-proteins and the management of monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol 2009 Oct; 147:22-42
- 6. Bird J, et al. Guidelines for the diagnosis and management of multiple myeloma 2011. Br J Haematol 2011 Jul; 154:32-75
- Anderson KC, et al. NCCN Clinical Practice Guidelines in Oncology for Multiple Myeloma. J Natl Compr Canc Netw 2011;9:1146-1183
- 8. Harousseau JL, et al. Multiple myeloma: ESMO Clinical Recommendations for diagnosis, treatment and follow-up. Ann Oncol 2009 May;20 Suppl 4:97-9
- 9. Comenzo RL, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain (AL) amyloidosis. Leukemia 2012 Apr 5. doi: 10.1038/leu.2012.100.
- 10. Hutchison CA, et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat Rev Nephrol 2011 Nov 1;8:43-51
- 11. Chinese Medical Association and Chinese Myeloma Working Group. Chinese Multiple Myeloma Diagnosis and Treatment Guidelines. Chin J Intern Med September 2013, 52:9
- 12. Tietsche de Moraes Hungria Vania, et al. Guidelines on the diagnosis and management of multiple myeloma treatment: Associação Brasileira de Hematologia e Hemoterapia e Terapia Celular Project guidelines: Associação Médica Brasileira. Rev Bras Hematol Hemoter 2013;35:201-17
- 13. Katzmann JA, et al. Serum Reference Intervals and Diagnostic Ranges for Free κ and Free λ Immunoglobulin Light Chains: Relative Sensitivity for Detection of Monoclonal Light Chains. Clin Chem 2002; 48:1437-1444
- 14. Hutchison CA, et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrology 2008; 9:11

- 15. Katzmann JA, et al. Screening Panels for Detection of Monoclonal Gammopathies. Clin Chem 2009; 55:1517-1522
- 16. Hill PG, et al. Serum Free Light Chains: An Alternative to the Urine Bence Jones Proteins Screening Test for Monoclonal Gammopathies. Cvlin Chem 2006; 52:1743-1748
- 17. Katzmann JA, et al. Elimination of the Need for Urine Studies in the Screening Algorithm for Monoclonal Gammopathies by Using Serum Immunofixation and Free Light Chain Assays. Mayo Clin Proc 2006; 81:1575-1578
- 18. Smith A, et al. Guidelines on the diagnosis and management of multiple myeloma. Br J Haematol 2005; 132:410-451
- 19. Mead GP, et al. Serum free light chains for monitoring multiple myeloma. Br J Haematol 2004; 126:348-354
- 20. Bradwell AR, et al. Serum test for assessment of patients with Bence Jones myeloma. Lancet 2003; 361:489-491
- 21. Lachmann HJ, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol 2003; 122:78-84
- 22. Drayson M, et al. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood 2001; 97:2900-2902
- 23. Wolff, et al. Assessment of the analytical performance and the sensitivity of serum free light chains immunoassay in patients with monoclonal gammopathy. Clin Bio 2007; 40:351-354
- 24. Abraham RS, et al. Correlation of Serum Immunoglobulin Free Light Chain Quantification with Urinary Bence Jones Protein in Light Chain Myeloma. Clin Chem 2002; 48:655657
- 25. Tate et al. Serum free light chains for monitoring multiple myeloma. Br J Haematol 2005; 128:405-406
- 26. Mösbauer et al. Monitoring serum free light chains in patients with multiple myeloma who achieved negative immunofixation after allogeneic stem cell transplantation. Haematologica 2007; 92:275-
- 27. Mead et al. Response to: Serum free light chains for monitoring multiple myeloma. Br J Haematol 2005; 128:406-407
- 28. Dawson et al. Extramedullary relapse of multiple myeloma associated with a shift in secretion from intact immunoglobulin to light chains. Haematologica 2007; 92:143-144
- 29. Kühnemund A, et al. 'Light chain escape-multiple myeloma' an escape phenomenon from plateau phase: report of the largest patient series using LC-monitoring. J Cancer Res Clin Oncol 2009; 135:477-484

Immunodeficiency

What are immunodeficiencies?

An immunodeficiency can occur when part of the immune system is defective, most commonly leading to an increased susceptibility to infection.

Primary immunodeficiencies (PIDs) are a series of over 300 disorders caused by genetic alterations that affect cells of the immune system.

Some PIDs become apparent in childhood while others may not develop until adulthood. PIDs are often chronic but can be treated once diagnosed.1

Only 30% of patients that receive a diagnosis of primary immunodeficiency are under the age of 15 vears2

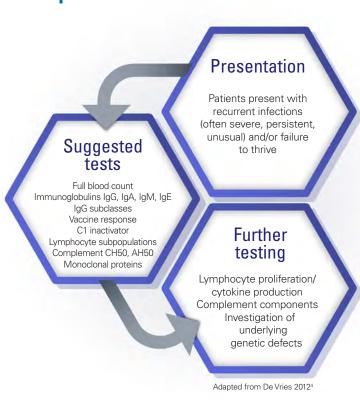
The most common PIDs are those with defects in antibody production.3

Potential Warning Signs:

Severe, Persistent, Unusual, or Recurrent infections (SPUR)

Infections requiring prolonged or intravenous antibiotic therapy

I Unexplained failure of an infant to thrive


A family history of known immunodeficiency or recurrent infections

Early diagnosis

- Improves health, quality of life, and lifespan
- Allows cost effective treatment
- Reduces healthcare expenditure

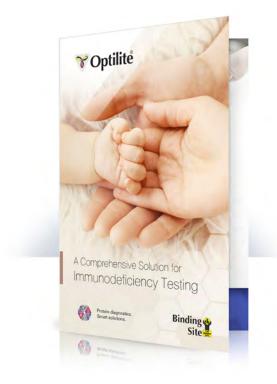
Healthcare costs can be reduced by over 50% after a patient is diagnosed with PID⁵

Diagnostic algorithm for suspected antibody deficiency

Diagnosis requires the use of information from a variety of laboratory tests.

Secondary immunodeficiencies may arise when the immune system has been compromised by external factors such as malnutrition, treatment with immunosuppressive drugs or chronic infections e.g. HIV.

Impairment can often be reversed with management of the initial condition.6


Reference

- 1. Chapel H, et al. Primary immune deficiencies principles of care. Front Immunol 2014; 5:1-12
- 2. Bousfiha AA, et al. Primary Immunodeficiency Diseases Worldwide: More Common than Generally Thought J Clin Immunol 2012; 33:1-7
- 3. Mahlaoui N, et al. The European Society for Immunodeficiencies (ESID) Registry:recent advancements in the epidemiology of Primary Immunodeficiencies and how does that translate in clinical care. Rare Diseases and Orphan Drugs 2014: 1:25-27
- 4. De Vries E. Patient-centred screening for primary immunodeficiency, a multistage diagnostic protocol designed for non-immunologists: 2011 update. Clin Exp Immunol 2012; 167:108-119
- 5. Model V, et al. Global Report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes, Immunol Res. 2018 Jun; 66(3):367-380 6. Chinen J, et al. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol 2010; 125:S195-203

IgG Subclasses

Comprehensive Menu of Assays

With extensive expertise in antibody specificity technology and commitment to disease state management and clinical guidelines, Binding Site gives clinicians and laboratory staff the tools to significantly improve diagnosis and management of patients with immune system disorders. Binding Site offers a comprehensive menu of assays for protein analysis.

For more information on Immunodeficiency Disorders (INC586) and Testing Protocols, please email us at info@bindingsite.com.

Proper diagnosis requires the use of information from a variety of laboratory test methods.

Specificity

For the reliable measurement of subclass concentrations Binding Site assays utilize highly specific, affinity purified, polyclonal antisera raised in sheep using patented technology.

Sensitivity

Binding Site IgG Subclass assays are optimized for use in the investigation of antibody deficiencies. Latex-enhanced reagents are provided for the measurement of IgG3 and IgG4 enabling accurate quantitation of deficient subclass levels as well as levels at the lower end of pediatric normal ranges.

Standardization

Calibration of an assay against an internationally recognized reference preparation will ensure that sample results remain accurate and consistent. In 1997 Carr-Smith et al. assigned IgG subclass values to the international serum protein reference material CRM470 which is the most commonly used reference material for commercial IgG assays. All Binding Site IgG subclass assays were subsequently calibrated against CRM470, with conversion factors available for customers wishing to compare results with those obtained in assays calibrated against the much earlier reference material WHO67/97 which is no longer available.

A new international reference material, ERM®-DA470k/ IFCC(DA470k; Institute for Reference Materials and Management), has been produced. Binding Site assays have been shown to give accurate results when evaluated against this material.

Optilite Optimized Protein System

DESCRIPTION	PACK	CODE
IgG Optilite kit Range 0.165-150, sensitivity 0.165 (g/L)	100 test	NK004.OPT.A
IgG1 Optilite kit Range 150-144000, sensitivity 150 (mg/L)	100 test	NK006.OPT.A
IgG2 Optilite kit Range 0.02-22, sensitivity 0.02 (g/L)	100 test	NK007.OPT.A
IgG3 Optilite kit Range 5.5-2200, sensitivity 5.5 (mg/L)	100 test	LK008.OPT.A
IgG4 Optilite kit Range 4.3-64800, sensitivity 4.3 (mg/L)	100 test	LK009.OPT.A

SPAPLUS Special Protein Analyzer

DESCRIPTION	PACK	CODE
IgG SPAPLUS kit Range 0.165-140, sensitivity 0.165 (g/L)	100 test	NK004.S.A
IgG1 SPAPLUS kit Range 0.15-144, sensitivity 0.15 (g/L)	100 test	NK006.S.A
IgG2 SPAPLUS kit Range 0.02-22, sensitivity 0.02 (g/L)	100 test	NK007.S.A
IgG3 SPAPLUS kit Range 0.0055-4, sensitivity 0.0055 (g/L)	100 test	LK008.S.A
IgG4 SPAPLUS kit Range 0.003-3.4, sensitivity 0.003 (g/L)	100 test	LK009.S.A

Siemens BNII

DESCRIPTION	PACK	CODE
BNII Latex Combi kit (Latex IgG3 & IgG4,non-latex IgG1 & IgG2)	2x48 test	LK001.TB
IgG1 BNII kit Range 2625-84000, sensitivity 131 (mg/L)	2x40 test	NK006.TB
IgG2 BNII kit Range 613-19600, sensitivity 153 (mg/L)	4x40 test	NK007.TB
IgG3 BNII kit Range 55-875, sensitivity 2.7 (mg/L)	4x48 test	LK008.TB
IgG4 BNII kit Range 38-613, sensitivity 1.9 (g/mL)	4x48 test	LK009.TB

It is necessary to open specific channels on the analyzer and this may require the assistance of a Siemens engineer. Please inquire for further information.

DESCRIPTION	PACK	CODE
BNII COMBI kit (Non-latex IgG1, IgG2, IgG3 & IgG4)	4x40 test	NK001.T
IgG1 BNII kit Range 1310-42000, sensitivity 66 (mg/L)	2x40 test	NK006.T
IgG2 BNII kit Range 313-10000, sensitivity 78 (mg/L)	4x40 test	NK007.T
IgG3 BNII kit Range 175-5600, sensitivity 44 (mg/L)	4x48 test	NK008.T
IgG4 BNII kit Range 120-3840, sensitivity 30 (mg/L)	4x48 test	NK009.T

These non-latex kits are intended for use with BN™II pre-programmed parameters. The parameters are provided in the product insert and should be checked against the version of software on the analyzer.

Small Volume Testing

For laboratories with small numbers of patient samples or if only a small volume of sample is available (e.g. pediatric samples) IgG subclasses may be measured using radial immunodiffusion (RID, page 17).

IgA Subclasses

IgA subclass concentrations can assist in the investigation of immunodeficiency, autoimmune, and infectious diseases.

Alterations of the IgA1/IgA2 ratio have been related to specific diseases and to anaphylactic transfusion reactions. IgA2 accounts for only 15% of total IgA therefore a deficiency of IgA2 may not be detected if only total serum IgA concentrations are measured. Grossly elevated levels of either subclass may occur in patients with IgA myeloma.

Latex enhanced reagents are provided for most assays enabling the quantitation of low levels of specific antibody. Each kit contains controls, calibrators, and full instructions for running the assay.

Units in parentheses apply to both range and sensitivity.

Binding Site Optilite

DESCRIPTION	PACK	CODE
IgA Optilite kit Range 0.02-70 sensitivity 0.02 (g/L)	100 test	NK010.OPT.A
IgA1 Optilite kit Range 35-6000, sensitivity 35 (mg/L)	50 test	NK087.OPT.A
IgA2 Optilite kit Range 50-1250, sensitivity 50 (mg/L)	50 test	LK088.OPT.A

Binding Site SPAPLUS

DESCRIPTION	PACK	CODE
IgA SPAPLUS kit Range 20-28000, sensitivity 20 (mg/L)	100 test	NK010.S
IgA1 SPAPLUS kit Range 30-6000, sensitivity 30 (mg/L)	50 test	NK087.S
IgA2 SPAPLUS kit Range 5-1250, sensitivity 5 (mg/L)	50 test	LK088.S

Siemens BNII

DESCRIPTION	PACK	CODE
IgA1 BNII kit Range 375-6000, sensitivity 94 (mg/L)	40 test	NK087.1T
IgA2 BNII kit Range 63-1000, sensitivity 3 (mg/L)	40 test	LK088.1T
IgA subclass BNII COMBI kit (Latex IgA2, non-latex IgA1)	2x40 test	LK003.T

A new protocol must be selected in order to run these assays.

Radial Immunodiffusion

DESCRIPTION	PACK	CODE
IgA subclass COMBI -NL RID kit 2 plates IgA1 range 640-6400 mg/L 2 plates IgA2 range 50-500 mg/L	4 plate kit	RK015

The ranges quoted are achieved from the assay-specific instrument protocols.

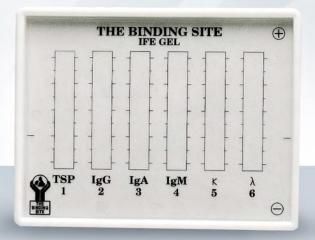
Nephelometry

Latex Enhanced Assays

The latex enhanced nephelometric assays are provided by Binding Site for easy implementation onto existing systems. The use of particle enhancement technology increases aggregation of immune complexes generating a high level of sensitivity. These kits contain a complete package including the latex enhanced reagent, buffer, calibrators, and controls.

DESCRIPTION	PACK	CODE
IgD BNII kit Range 6.5-4150 mg/L, sensitivity 1.3 mg/L	2x50 test	LK013.T
β2 Microglobulin BNII kit for serum and urine Range 0.7-22.5 mg/L, Sensitivity 0.14 mg/L (serum), 0.04 mg/L (urine)	3x50 test	LK043.T

SPE and **Immunofixation**


Serum Protein Electrophoresis (SPE) is particularly suitable for the initial screening of serum for monoclonal immunoglobulins and free light chains (Bence Jones proteins), aiding in the diagnosis of monoclonal gammopathies.

Immunofixation (IFE) is used to identify immunoglobulins and free light chains. Quantitation of free light chains can be performed by automated methods using Freelite® (page 10).

SPE kits contain 10 gels and reagents (sufficient for 100 tests). IFE kits contain 10 gels and reagents (sufficient for 10 samples).

Gels measure 102 x 77 mm and can be used with most popular manufacturers of electrophoresis tanks.

PACK	CODE
1.4 mL	PX016
1.4 mL	PX018
1.4 mL	PX013
100 test	XK003
10 test	XK001
	1.4 mL 1.4 mL 1.4 mL 100 test

The Digital RID Reader is designed to simplify and speed-up the process of reading precipitin radial immunodiffusion rings.

Radial Immunodiffusion is a well-established technique based on the complex formed between antigen and antibody, producing a visible precipitin ring in the gel. The concentration of specific proteins can be determined efficiently and accurately by measuring the precipitin ring diameter using our RID reader.

The Binding Site provides a solution to determine the precipitin ring diameter using the RID Reader or a jeweller's eye piece. Using a range of quantitative calibration methods, the RID Reader provides a diameter reading tailored for each assay kit.

With advanced software, the RID Reader is more efficient and user friendly, meeting all your laboratory needs.

The use of this software allows:

Accuracy in reading

Efficiency in measurement

Confidence in results

User-friendly software to enhance your experience

Accurate in reading and efficient in measurement

Advanced technology to bring you defining rings

Human Complement Functional Assays

Functional assays are effective as screening tools to detect complement deficiencies and aid in the monitoring of total complement activity. Assays are based on the hemolysis of red blood cells following activation of the complement system.

DESCRIPTION	PACK	CODE
	3 plate kit	RC001.3
Total Hemolytic Complement kit	2 plate kit	RC001.2
	1 plate kit	RC001.1
Functional C1 Inactivator kit	3 plate kit	RC002.3
Functional C1 Inactivator COMBI kit Two plates of Functional C1 Inactivator One plate of C1 Inactivator	3 plate kit	RK019

Human Complement Proteins

DESCRIPTION	PACK	CODE
C1 Inactivator - NL RID kit	3 plate kit	RN019.3
C1q - NL RID kit	3 plate kit	RN020.3
C3 - NL RID kit	3 plate kit	RN023.3
C4 - NL RID kit	3 plate kit	RN025.3
C5 - NL RID kit	3 plate kit	RN027.3

Human Coagulation Proteins

DESCRIPTION	PACK	CODE
Antithrombin III - NL RID kit	3 plate kit	RN040.3
Fibrinogen - NL RID kit	3 plate kit	RN056.3
Plasminogen - NL RID kit	3 plate kit	RN065.3
NANORID Protein C RID kit	3 plate kit	GT118.3

Total Hemolytic Complement plate after hemolysis.

Human Immunoglobulins

DESCRIPTION	PACK	CODE
lgG - NL RID kit	3 plate kit	RN004.3
IgG1 Subclass - SD RID kit	3 plate kit	RN106.3
lgG2 Subclass - SD RID kit	3 plate kit	RN107.3
lgG3 Subclass - SD RID kit	3 plate kit	RN108.3
lgG4 Subclass - SD RID kit	3 plate kit	RN109.3
IgG Subclass COMBI - SD RID kit One plate each of IgG1, IgG2, IgG3 and IgG4	4 plate kit	RK021
lgA - NL RID kit	3 plate kit	RN010.3
IgA Subclass COMBI kit - NL RID kit Two plates each of IgA1 and IgA2	4 plate kit	RK015
IgM - NL RID kit	3 plate kit	RN012.3
IgG, IgA, IgM COMBI - NL RID kit One plate each of IgG, IgA, and IgM	3 plate kit	RK002
IgD - NL RID kit	3 plate kit	RN013.3

Human Proteins

DESCRIPTION	PACK	CODE
Albumin - NL RID kit	3 plate kit	RN032.3
α1 - Antitrypsin - NL RID kit	3 plate kit	RN034.3
NANORID [™] β2 - Microglobulin - EL RID kit	3 plate kit	GT043.3
NANORID" CRP - EL RID kit	3 plate kit	GT044.3
Haptoglobin - NL RID kit	3 plate kit	RN058.3
Transferrin - NL RID kit	3 plate kit	RN070.3

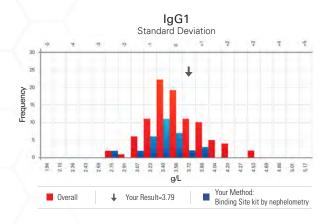
IMMPROVE Quality Assurance Schemes

IMMPROVE™ Quality Assurance (QA) Schemes allow laboratories to monitor the standard of their own results over time and compare them to other methods available. Participants in the schemes are located in more than 15 countries worldwide. Laboratories may join a scheme at any time during the year. Each laboratory is allocated a reference number on registration and all reports are generated against the relevant number in order to preserve confidentiality.

In all Binding Site IMMPROVE QA Schemes the participating laboratory is asked to run the sample provided on their routine assays and report the results obtained. Following analysis of the results a report is sent to each participating laboratory. The number of samples issued per 12 months is indicated in the table.

Registration is for one year at the end of which there is the opportunity to re-register for a further year on an annual basis.

To register or re-register, please contact your local Binding Site representative for more information.


Subclass QA Scheme

This scheme is for the analysis of any or all of the following tests: IgG, IgA, IgM, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. Results can be returned via the IMMPROVE website with password protected secure access. The report members receive provides a full statistical analysis of results with cumulative, performance related scoring. More than 170 laboratories worldwide participate.

Serum Paraprotein QA Scheme

Serum sample analysis for IgG, IgA, IgM, β2 Microglobulin, free kappa, free lambda, and the kappa/lambda (κ/λ) ratio plus screening and typing techniques. Results can be returned via the IMMPROVE website with password protected secure access. The report members receive includes a full statistical analysis of results to enable the participating laboratory to assess their performance, together with images of electrophoresis gels and interpretative comments. Over 300 laboratories participate.

Serum free Lambda

Standard Deviation Frequency Your Method: ¥ Your Result=351.75 Overall Bindina Site Freelite®

Urine Paraprotein QA Scheme

Urine sample analysis for free kappa, free lambda, and the kappa/lambda (κ/λ) ratio, together with results for screening and typing. Results can be returned via the IMMPROVE website with password protected secure access. The report members receive includes a full statistical analysis of results to enable the participating laboratory to assess their performance, together with images of electrophoresis gels. Approximately 110 laboratories participate.

DESCRIPTION	PACK	CODE
MMPROVET Subclass Q.A. Scheme registration	6 issues	QA001
©.A. Scheme registration	4 issues	QA003
Urine Paraproteins Q.A. Scheme registration	2 issues	QA006

Notes

Contact Us

USA, Canada: Binding Site Inc.

6730 Mesa Ridge Road San Diego, CA 92121 United States of America

Tel 858 453 9177 Fax 858 453 9189 Toll Free 800 633 4484

info@bindingsite.com

www.us.bindingsite.com

BN™II is a trademark of Siemens AG. Other brand or product names may be trademarks of their respective holders.

Freelite® Mx and IMMPROVE are trademarks of The Binding Site Group Ltd (Birmingham, UK). Optilite, SPAPLUS, Freelite®, BINDARID, and NANORID are registered trademarks of The Binding Site Group Ltd (Birmingham, UK) in certain countries.

INC608